
Solution of the Wave Equation by Separation of Variables

The Problem

Let u(x, t) denote the vertical displacement of a string from the x axis at position x and time t. The

string has length `. Its left and right hand ends are held fixed at height zero and we are told its initial

configuration and speed. For notational convenience, choose a coordinate system so that the left hand end

of the string is at x = 0 and the right hand end of the string is at x = `.

x

u

`

We assume that the string is undergoing small amplitude transverse vibrations so that u(x, t) obeys the wave

equation
∂2u
∂ t2

(x, t) = c2 ∂2u
∂x2 (x, t) for all 0 < x < ` and t > 0 (1)

The conditions that the left and right hand ends are held at height zero are encoded in the “boundary

conditions”

u(0, t) = 0 for all t > 0 (2)

u(`, t) = 0 for all t > 0 (3)

As we have been told the position and speed of the string at time 0, there are given functions f(x) and g(x)

such that the “initial conditions”

u(x, 0) = f(x) for all 0 < x < ` (4)

ut(x, 0) = g(x) for all 0 < x < ` (5)

are satisfied. The problem is to determine u(x, t) for all x and t.

Outline of the Method of Separation of Variables

We are going to solve this problem in three steps.

Step 1 In the first step, we find all solutions of (1) that are of the special form u(x, t) = X(x)T (t) for

some function X(x) that depends on x but not t and some function T (t) that depends on t but

not x. This is where the name “separation of variables” comes from. It is of course too much to

expect that all solutions of (1) are of this form. But if we find a bunch of solutions Xi(x)Ti(t)

of this form, then since (1) is a linear equation,
∑

i aiXi(x)Ti(t) is also a solution for any choice

of the constants ai. (Check this yourself!) If we are lucky (and we shall be lucky), we will be

able to choose the constants ai so that the other conditions (2–5) are also satisfied.

Step 2 We impose the boundary conditions (2) and (3).

Step 3 We impose the initial conditions (4) and (5).

The First Step – Finding Factorized Solutions

The factorized function u(x, t) = X(x)T (t) is a solution to the wave equation (1) if and only if

X(x)T ′′(t) = c2X ′′(x)T (t) ⇐⇒ X′′(x)
X(x) = 1

c2

T ′′(t)
T (t)
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The left hand side is independent of t. So the right hand side, which is equal to the left hand side, must be

independent of t too. The right hand side is independent of x. So the left hand side must be independent of

x too. So both sides must be independent of both x and t. So both sides must be constant. Let’s call the

constant σ. So we have

X′′(x)
X(x) = σ 1

c2

T ′′(t)
T (t) = σ

⇐⇒ X ′′(x)− σX(x) = 0 T ′′(t)− c2σT (t) = 0
(6)

We now have two constant coefficient ordinary differential equations, which we solve in the usual way. We

try X(x) = erx and T (t) = est for some constants r and s to be determined. These are solutions if and only

if
d2

dx2 erx − σerx = 0 d2

dt2
est − c2σest = 0

⇐⇒
(

r2 − σ
)

erx = 0
(

s2 − c2σ)est = 0

⇐⇒ r2 − σ = 0 s2 − c2σ = 0

⇐⇒ r = ±
√

σ s = ±c
√

σ

If σ 6= 0, we now have two independent solutions, namely e
√

σx and e−
√

σx, for X(x) and two independent

solutions, namely ec
√

σt and e−c
√

σt, for T (t). If σ 6= 0, the general solution to (6) is

X(x) = d1e
√

σx + d2e
−
√

σx T (t) = d3e
c
√

σt + d4e
−c
√

σt

for arbitrary constants d1, d2, d3 and d4. If σ = 0, the equations (6) simplify to

X ′′(x) = 0 T ′′(t) = 0

and the general solution is

X(x) = d1 + d2x T (t) = d3 + d4t

for arbitrary constants d1, d2, d3 and d4. We have now found a huge number of solutions to the wave

equation (1). Namely

u(x, t) =
(

d1e
√

σx + d2e
−
√

σx
)(

d3e
c
√

σt + d4e
−c
√

σt
)

for arbitrary σ 6= 0 and arbitrary d1, d2, d3, d4

u(x, t) =
(

d1 + d2x
)(

d3 + d4t
)

for arbitrary d1, d2, d3, d4

The Second Step – Imposition of the Boundary Conditions

If Xi(x)Ti(t), i = 1, 2, 3, · · · all solve the wave equation (1), then
∑

i aiXi(x)Ti(t) is also a solution for

any choice of the constants ai. This solution satisfies the boundary condition (2) if and only if

∑

i

aiXi(0)Ti(t) = 0 for all t > 0

This will certainly be the case if Xi(0) = 0 for all i. In fact, if the ai’s are nonzero and the Ti(t)’s are

independent, then (2) is satisfied if and only if all of the Xi(0)’s are zero. For us, it will be good enough to

simply restrict our attention to Xi’s for which Xi(0) = 0, so I am not even going to define what “independent”

means(1). Similarly, u(x, t) =
∑

i aiXi(x)Ti(t) satisfies the boundary condition (3) if and only if

∑

i

aiXi(`)Ti(t) = 0 for all t > 0

(1) It forbids, for example, T1 = 7T2 or T1 = 3T2 + 5T3.
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and this will certainly be the case if Xi(`) = 0 for all i. We are now going to go through the solutions that

we found in Step 1 and discard all of those that fail to satisfy X(0) = X(`) = 0.

First, consider σ = 0 so that X(x) = d1 + d2x. The condition X(0) = 0 is satisfied if and only if d1 = 0.

The condition X(`) = 0 is satisfied if and only if d1 + `d2 = 0. So the conditions X(0) = X(`) = 0 are both

satisfied only if d1 = d2 = 0, in which case X(x) is identically zero. There is nothing to be gained by keeping

an identically zero X(x), so we discard σ = 0 completely.

Next, consider σ 6= 0 so that d1e
√

σx + d2e
−
√

σx. The condition X(0) = 0 is satisfied if and only if

d1 + d2 = 0. So we require that d2 = −d1. The condition X(`) = 0 is satisfied if and only if

0 = d1e
√

σ` + d2e
−
√

σ` = d1

(

e
√

σ` − e−
√

σ`
)

If d1 were zero, then X(x) would again be identically zero and hence useless. So instead, we discard any σ

that does not obey

e
√

σ` − e−
√

σ` = 0 ⇐⇒ e
√

σ` = e−
√

σ` ⇐⇒ e2
√

σ` = 1

In the last step, we multiplied both sides of e
√

σ` = e−
√

σ` by e
√

σ`. One σ that obeys e2
√

σ` = 1 is σ = 0.

But we are now considering only σ 6= 0. Fortunately, there are infinitely many complex numbers(2) that

work. In fact e2
√

σ` = 1 if and only if there is an integer k such that

2
√

σ` = 2kπı ⇐⇒
√

σ = k π
`
ı ⇐⇒ σ = −k2 π2

`2

With
√

σ = k π
`
ı and d2 = −d1,

X(x)T (t) = d1

(

eı kπ

`
x − e−ı kπ

`
x
)(

d3e
ı ckπ

`
t + d4e

−ı ckπ

`
t
)

= 2ıd1 sin
(

kπ
`

x
)[

(d3 + d4) cos
(

ckπ
`

t) + ı(d3 − d4) sin
(

ckπ
`

t
)]

= sin
(

kπ
`

x
)[

αk cos
(

ckπ
`

t) + βk sin
(

ckπ
`

t
)]

where αk = 2ıd1(d3 + d4) and βk = 2d1(d3 − d4). Note that, to this point, d1, d3 and d4 are allowed to be

any complex numbers so that αk and βk are allowed to be any complex numbers.

The Third Step – Imposition of the Initial Conditions

We now know that

u(x, y) =
∞
∑

k=1

sin
(

kπ
`

x
)[

αk cos
(

ckπ
`

t) + βk sin
(

ckπ
`

t
)]

obeys the wave equation (1) and the boundary conditions (2) and (3), for any choice of the constants αk, βk.

It remains only to see if we can choose the αk’s and βk’s to satisfy

f(x) = u(x, 0) =

∞
∑

k=1

αk sin
(

kπ
`

x
)

(4′)

g(x) = ut(x, 0) =
∞
∑

k=1

βk
ckπ

`
sin

(

kπ
`

x
)

(5′)

But we already know(3) that any (reasonably smooth) function, h(x), defined on the interval 0 < x < `, has

a unique representation

h(x) =

∞
∑

k=1

bk sin kπx
`

(7)

(2) See, for example, the notes “Complex Numbers and Exponentials”.
(3) See, for example, the notes “Fourier Series”.
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as a linear combination of sin kπx
`

’s and we also know the formula

bk = 2
`

∫ `

0

h(x) sin kπx
`

for the coefficients. We can make (7) match (4′) by choosing h(x) = f(x) and bk = αk. This tells us that

αk = 2
`

∫ `

0
f(x) sin kπx

`
dx. Similarly, we can make (7) match (5′) by choosing h(x) = g(x) and bk = βk

ckπ
`

.

This tells us that ckπ
`

βk = 2
`

∫ `

0 g(x) sin kπx
`

dx. So we have a solution:

u(x, t) =

∞
∑

k=1

sin
(

kπ
`

x
)[

αk cos
(

ckπ
`

t) + βk sin
(

ckπ
`

t
)]

(8)

with

αk = 2
`

∫ `

0

f(x) sin kπx
`

dx βk = 2
ckπ

∫ `

0

g(x) sin kπx
`

dx

While the sum (8) can be very complicated, each term, called a “mode”, is quite simple. For each fixed

t, the mode sin
(

kπ
`

x
)[

αk cos
(

kcπ
`

t) + βk sin
(

kcπ
`

t
)]

is just a constant times sin
(

kπ
`

x
)

. As x runs from 0

to `, the argument of sin
(

kπ
`

x
)

runs from 0 to kπ, which is k half–periods of sin. Here are graphs, at

fixed t, of the first three modes, called the fundamental tone, the first harmonic and the second harmonic.

x

y

fundamental

` x

y

1st harmonic

` x

y

2nd harmonic

`

For each fixed x, the mode sin
(

kπ
`

x
)[

αk cos
(

kcπ
`

t) + βk sin
(

kcπ
`

t
)]

is just a constant times cos
(

kcπ
`

t) plus a

constant times sin
(

kcπ
`

t). As t increases by one second, the argument, kcπ
`

t, of both cos
(

kcπ
`

t) and sin
(

kcπ
`

t)

increases by kcπ
`

, which is kc
2`

cycles (i.e. periods). So the fundamental oscillates at c
2`

cps, the first harmonic

oscillates at 2 c
2`

cps, the second harmonic oscillates at 3 c
2`

cps and so on. If the string has density ρ and

tension T , then we have seen(4) that c =
√

T
ρ
. So to increase the frequency of oscillation of a string you

increase the tension and/or decrease the density and/or shorten the string.

Example 1 As a concrete example, suppose that

∂2u
∂ t2

(x, t) = c2 ∂2u
∂x2 (x, t) for all 0 < x < 1 and t > 0

u(0, t) = u(1, t) = 0 for all t > 0

u(x, 0) = x(1− x) for all 0 < x < 1

ut(x, 0) = 0 for all 0 < x < 1

This is a special case of equations (1–5) with ` = 1, f(x) = x(1− x) and g(x) = 0. So, by (8),

u(x, y) =

∞
∑

k=1

sin(kπx)
[

αk cos(ckπt) + βk sin(ckπt)
]

with

αk = 2

∫ 1

0

x(1− x) sin(kπx) dx βk = 2

∫ 1

0

0 sin(kπx) dx = 0

(4) See, for example, the notes “Derivation of the Wave Equation”.
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Using(5)

∫ 1

0

x sin(kπx) dx =

∫ 1

0

− 1
π

d
dk

cos(kπx) dx = − 1
π

d
dk

∫ 1

0

cos(kπx) dx = − 1
π

d
dk

1
kπ

sin(kπx)
∣

∣

1

0

= − cos(kπ) 1
kπ

∫ 1

0

x2 sin(kπx) dx =

∫ 1

0

− 1
π2

d2

dk2 sin(kπx) dx = − 1
π2

d2

dk2

∫ 1

0

sin(kπx) dx = 1
π2

d2

dk2

1
kπ

cos(kπx)
∣

∣

1

0

= cos(kπ) 2−k2π2

k3π3 − 2
k3π3

we have

αk = 2

∫ 1

0

x(1− x) sin(kπx) dx = 2
[

− cos(kπ) 1
kπ
− cos(kπ) 2−k2π2

k3π3 + 2
k3π3

]

= 4
k3π3 [1− cos(kπ)]

=

{

8
k3π3 for k odd

0 for k even

and

u(x, y) =

∞
∑

k=1

k odd

8
k3π3 sin(kπx) cos(ckπt)

Example 2 As a second concrete example, suppose that

∂2u
∂ t2

(x, t) = c2 ∂2u
∂x2 (x, t) for all 0 < x < 1 and t > 0

u(0, t) = u(1, t) = 0 for all t > 0

u(x, 0) = sin(5πx) + 2 sin(7πx) for all 0 < x < 1

ut(x, 0) = 0 for all 0 < x < 1

This is again a special case of equations (1–5) with ` = 1. So, by (8),

u(x, y) =

∞
∑

k=1

sin(kπx)
[

αk cos(ckπt) + βk sin(ckπt)
]

This time it is very inefficient to use the integral formulae to evaluate αk and βk. It is easier to observe

directly, just by matching coefficients, that

sin(5πx) + 2 sin(7πx) = u(x, 0) =
∞
∑

k=1

αk sin(kπx) ⇒ αk =

{

1 if k = 5
2 if k = 7
0 if k 6= 5, 7

0 = ut(x, 0) =

∞
∑

k=1

ckπβk sin(kπx) ⇒ βk = 0

So

u(x, y) = sin(5πx) cos(5cπt) + 2 sin(7πx) cos(7cπt)

(5) Note that we cannot impose the condition that k is an integer until after evaluating the d

dk
derivatives.
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Using Fourier Series to Solve the Wave Equation

We can also use Fourier series to derive the solution (8) to the wave equation (1) with boundary

conditions (2,3) and initial conditions (4,5). The basic observation is that, for each fixed t ≥ 0, the unknown

u(x, t) is a function of the one variable x and this function vanishes at x = 0 and x = `. Thus, by the Fourier

series theorem and the odd periodic extension trick, u(x, t) has, for each fixed t, a unique expansion

u(x, t) =

∞
∑

k=1

bk(t) sin
(

kπx
`

)

(9)

By using other periodic extensions, like the even periodic extension, we can get other expansions of u(x, t)

too. But the odd periodic expansion (9) is particularly useful because, with it, the boundary conditions (2,3)

are automatically satisfied. If we substitute x = 0 into the right hand side of (9) we necessarily get zero,

regardless of the value of bk(t), because every term contains a factor of sin(0) = 0. Similarly, if we substitute

x = ` into the right hand side of (9) we again necessarily get zero, for any bk(t), because sin(kπ) = 0 for

every integer k.

The solution u(x, t) is completely determined by the, as yet unknown, coefficients bk(t). Furthermore

these coefficients can be found by substituting u(x, t) =
∑∞

k=1 bk(t) sin
(

kπx
`

)

into the three remaining re-

quirements (1), (4), (5) on u(x, t). First the wave equation (1):

0 = ∂2u
∂t2

(x, t) − c2 ∂2u
∂x2 (x, t) =

∞
∑

k=1

b′′k(t) sin
(

kπx
`

)

+

∞
∑

k=1

k2π2c2

`2
bk(t) sin

(

kπx
`

)

=

∞
∑

k=1

[

b′′k(t) + k2π2c2

`2
bk(t)

]

sin
(

kπx
`

)

This says that, for each fixed t ≥ 0, the function 0, viewed as a function of x, has Fourier series expansion
∑∞

k=1

[

b′′k(t) + k2π2c2

`2
bk(t)

]

sin
(

kπx
`

)

. Applying (9) with h(x) being the zero function and with bk replaced

by
[

b′′k(t) + k2π2c2

`2
bk(t)

]

then forces

b′′k(t) + k2π2c2

`2
bk(t) = 2

`

∫ `

0

0 sin
(

kπx
`

)

dx = 0 for all k, t (1′)

Substituting into (4) and (5) gives

u(0, t) =

∞
∑

k=1

bk(0) sin
(

kπx
`

)

= f(x)

∂u
∂t

(0, t) =

∞
∑

k=1

b′k(0) sin
(

kπx
`

)

= g(x)

By uniqueness of Fourier coefficients, once again,

bk(0) = 2
`

∫ `

0

f(x) sin
(

kπx
`

)

dx (4′)

b′k(0) = 2
`

∫ `

0

g(x) sin
(

kπx
`

)

dx (5′)

For each fixed k, equations (1′), (4′) and (5′) constitute one second order constant coefficient ordinary

differential equation and two initial conditions for the unknown function bk(t).
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You already know how to solve constant coefficient ordinary differential equations. The function bk(t) =

ert satisfies the ordinary differential equation (1′) if and only if

r2 + k2π2c2

`2
= 0

which in turn is true if and only if

r = ±ikπc
`

so that the general solution to (1′) is

bk(t) = Ckei kπc

`
t + Dke−i kπc

`
t

with Ck and Dk arbitrary constants. Using e±i kπc

`
t = cos

(

kπc
`

t
)

± i sin
(

kπc
`

t
)

we may rewrite the solution

as

bk(t) = αk cos
(

ckπ
`

t) + βk sin
(

ckπ
`

t
)

with αk = Ck + Dk and βk = iCk − iDk again arbitrary constants. They are determined by the initial

conditions (4′) and (5′).

(4′) =⇒ bk(0) = αk = 2
`

∫ `

0

f(x) sin
(

kπx
`

)

dx

(5′) =⇒ b′k(0) = ckπ
`

βk = 2
`

∫ `

0

g(x) sin
(

kπx
`

)

dx =⇒ βk = 2
ckπ

∫ `

0

g(x) sin
(

kπx
`

)

dx

This gives us the solution (8) once again.
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